例如假设加速轨道长一千公尺,则根据中学的速度计算物理公式,我们可以算出在一千万G、一亿G与十亿G三种加速度下所得到的炮口初速:
V^2=2*a*s
(10000000*9.8*1000*2)y.5/1000=443km/sec
(100000000*9.8*1000*2)y.5/1000=1400km/sec
(1000000000*9.8*1000*2)y.5/1000=4427km/sec
这是使用Windows小算盘的自动计算公式,*9.8之前的数字即为以一倍地表重力为单位的加速度的倍数,大家可自行修改此数字,然后把等号(含)以前的部分复制到剪贴簿,再贴到小算盘里,即可立即求出答案。
从以上的计算结果可以看出,即使施以十亿个G的加速度,一千公尺长的磁道炮的炮口初速也只有秒速4427km而已。这个速度与光束武器的每秒三十万公里比起来实在是低的可怜。距离一光秒的目标光束武器只要一秒便可以击中,换成弹道速度4427/km/sec的磁道炮弹则要飞行68秒才能打到,并且前提还是炮管中的炮弹加速度还得要能够达到十亿倍重力才行。
另外,由于过大的加速度会摧毁所有电子机械仪器,以及高加速时弹头承受的巨大电磁场干扰(此为电磁加速原理,任何电磁加速系统均无法避免这个问题),故高速发射的磁道炮里面将无法装备任何引擎或是导引装置。这也就是说在同样的命中率下,其射程会远低于光束武器。所以磁道炮在远距离时对于机动目标几乎是没有用的,只能用来对付数千公里内的机动目标。
虽然如此,磁道炮却有个光束武器没有的特性,就是由于宇宙中阻力趋近于零,这种系统的射程几乎是无限大,其威力不随距离而降低。而光速武器与粒子武器则会受到弹头扩散的问题而有一个射程上限(不过粒子武器扩散的影响比雷射武器小的多)。所以磁道炮会成为太空船在距外对付大型固定目标的一种好武器。例如浮游要塞、小行星基地、月面基地或是太空殖民地这些具有稳定轨道的目标。
以上这些固定基地不需移动,没有运动所需的燃料消耗问题,所以其质量与体积可能会比军舰大上数千倍到上万倍之多。这使固定基地能够装备大量远较舰艇更长轨道与更大反射镜的粒子武器与光束武器,其火力与射程当然也就会比战舰上的同类武器高上许多。而应付这些固定目标最好的方法便是在其射程外发射大量威力不随距离而降低的磁道炮弹头。
由于固定目标的轨道十分稳定又难以机动,故命中率不是问题。而磁道炮弹药价格也会比使用飞弹低很多,所以磁道炮会成为远距离对要塞与对地轰击的主要武器。但需要注意的是对于攻击星球表面目标而言,它只能轰击没有大气的星球,如月面基地或小行星表面的基地。射击地球表面基地的话,磁道炮弹头有可能会在大气中烧毁,或至少受到空气干扰而使精确度降低许多。
具有大气护盾的星球会是难以攻击的目标。高能雷射会被大气吸收或偏折而大幅影响威力与射程,粒子炮则会被大气分子干扰而影响弹道,威力也嫌不足。反物质粒子炮则由于会与大气分子产生大量歼灭效应因而会使其在大气内的弹道无法预测,甚至在空中便被消耗完毕。唯一的方法是用低速磁道炮发射表面有隔热层,速度不高的大质量弹头轰炸星球,为了顾及威力,可能还得动用核子弹头。总之一句话,攻击具行星并不容易,特别是具有大气层的行星更是困难。这在以后的行星强袭登陆篇会有更深入的解说。在这里要指出的是低速大弹头的磁道炮很可能是行星降下作战部队所能获得的唯一的舰炮支持火力。而这种弹头质量与体积太大,无法与一般太空战斗中用的磁道炮弹头共享线性发射轨,必须使用特别(轨距比较宽)的轨道。幸好此种轨道亦可用以发射飞弹,不至于沦为单一用途而减低整体的战斗效益。
4.飞弹(Missile)
大家所熟知的飞弹也会是太空战斗中使用的的主要武器之一。但有几点要注意,与一般印象稍微不同的是太空战斗中用的飞弹会非常大。目前只有一种飞弹可大约类比,那就是洲际飞弹。原因非常简单,小型飞弹不可能追的上也不可能打的中目标。现今的飞弹之所以可以做的很小,小到甚至可以由单兵携带完全是因为使用化学推进剂。在目前所有推进系统中,最简单也最小的推进系统便是使用固态燃料的火箭引擎。大家应该都曾放过冲天炮,没错,那就是最小最简单的火箭。其它如液态燃料火箭与喷射引擎之类的体积就会比较大了。
需要注意的是,在太空船还在用化学火箭当作主要动力的时候,太空战斗是打不起来的。这就像还在使用蒸气机的年代不会直升机空降突击作战,还在使用螺悬桨飞机的时候不会有洲际飞弹一样。当人类进行大规模行星间飞行的时候必定至少是使用核能引擎,可能是核分裂,更可能是核融合动力。这才能够让太空船以经济上能够接受的速度与价格在行星间航行。而想追上核动力太空船就必须要使用核融合动力的飞弹才行。使用化学火箭的飞弹其速度在光束近迫防御系统眼中不会比爬行中的乌龟快多少。
核引擎是可以在技术成熟后缩小,但基于其特性,能够缩小的程度会有限制。比如核电机组也没法缩小到能够装进汽车的引擎箱里面。能够装到飞弹上的最小引擎有多大?这可以依照飞弹的飞行性能来分析。因为是在侦察到敌人位置(至少是大略的位置)后才发射,飞弹需要的是在几十分钟内的短时间内加到最高速的能力,不能像太空船一样可以悠闲的花上几十个小时甚至数天的时间来加速。因此体积小,高效率但低推力的核能离子推进系统就被否决了,必须使用具有大推力能在短时间内加速的热推进系统,这就表示几十吨甚至上百吨的推进系统是跑不掉的。再者,核融合燃料多半是轻元素(核分裂则使用重元素),因此燃料箱会有庞大的体积。
而为了要增加速度追上太空船,甚至要能够达到军舰的十倍以上的速度以尽快穿越其近迫火力圈,飞弹的燃料必须带的够多,同时弹头重量必须尽量缩小。又因为大型军舰非常不容易击毁,而太空中的军舰会比地球上的同级舰更不容易被击毁(原因在以后的章节会有进一步说明),因此弹头威力必须够大,数百吨到上千吨*当量威力的弹头是跑不掉的。但为了速度需求又不能真的装上数百吨重的zha药弹头,于是只剩下一种可能性:低威力的战术核子弹头。
根据前述推论,我们可以大致描述一下太空战斗中飞弹的形式,基本上本体形状与大小和现在使用的火箭非常像(目前的ICBM重量多在数十吨到上百吨左右),但将会采用最先进的小型融合引擎,使飞弹弹头的终端速度能够达到秒速数千公里甚至数万公里以上。这使其得以在数十秒内突破目标的近迫火力网以增加生存性。其携带的弹头应该具有千吨级核武的威力,而为了在强大的光束武器近迫防御网中残存下来以击中目标,可能会采取多弹头的方式。
例如一枚飞弹携带十个弹头,在目标的近迫火力圈外释放,弹头群分布面积则以目标为中心含盖一个区域以增加目标闪躲时的命中率。现在假设核融合火箭引擎可以缩小到每颗50吨的水平,则一枚100吨重携带十个500kg重的末端归向核弹头的飞弹速度大约会在秒速8600公里左右。如果能把引擎缩小到20吨,则整枚飞弹的大小便可以减半,可以用50吨重的飞弹携带同样数量的弹头达到一万公里的秒速。换句话说,引擎技术是飞弹运用的关键。
至于飞弹的优点则和轨道炮相同,射程几乎是无限大的,威力也不随射程降低。只不过飞弹具有导引能力,所以有效射程会远比磁道炮大许多。只要得到目标座标矢量的话,飞弹甚至可以射击数十光秒到数光分距离远的敌人,当然这得花上数小时的飞行时间。攻击远方敌人时飞弹会在发射后把燃料烧到剩一点点以加到最高速,之后关闭引擎采取惯性航行,直到接近目标后再开启引擎做最后的修正,进入敌人近迫火网前切离推进段,释放大量体积与热讯号较小的弹头以增加生存性,而推进段的最后用途便是作为混淆敌人拦截解算的诱饵。
磁道炮受限于轨道长度因而加速过大而无法装备导引与航向修正系统,速度也很难超过秒速一千公里。飞弹的加速度虽然比磁道炮低很多,但由于可以长时间的加速,故能达到非常高的终端速度。又因为装备了归向系统,在远距离时的精确度会远高于磁道炮与光束武器等直接射击的无导引武器。加上可以装备核子弹头,威力会远高于其它的武器,这方面上大概只有反物质粒子炮可以与其相比。
飞弹的最大缺点就是其价格。太空中的环境十分单纯,寻标与导航系统的技术难度并不大,因而这方面的成本不会多高。问题是每枚飞弹都需要一个引擎,还得是体积与重量最小、技术层次最高的引擎,核融合引擎并不像冲天炮一样可以在地下工厂随便做出来的。这种引擎会非常贵,且还是一次性使用就消耗掉了。加上飞弹的体积大,速度比光束武器慢许多,因此是可以预警也可以被干扰乃至于拦截的。军舰上也会有一堆雷射点防御炮塔,因此会有大部分的飞弹击中目标前就被拦住,唯一的方法是发射大量飞弹进行饱和攻击,期望其中能有一两枚能够击中目标。实际上也只要一枚命中弹头便可以击毁敌舰。但如此大量使用又会导致极高的成本,这就是飞弹系统要面对的最主要的问题。而使用多弹头可以缓解飞弹成本的问题,比如十枚弹头的飞弹比起单弹头飞弹而言,可视为引擎减少为十分之一,但此种减少效果有其极限。
有一点要特别提出的就是核弹头(或反物质弹头)等大威力弹头的破坏半径,这是常受人误解的地方。太空中和大气中是两个截然不同的环境,一般大气中的概念并不一定适用于真空环境。大威力核弹在大气中的破坏主要来自于冲击波损害,所谓的火球以及之后的冲击波破坏乃是因为核爆放出的能量(主要是光子)对周围的大气分子施以能量,将其瞬间加热,爆心产生的气体游离电浆团便是火球,被高速膨胀推出的气流锋面便是冲击波。
换句话说,大气是作为传递核爆爆震破坏(震波)的主要媒介。但太空中是真空的,没有可以传递破坏的媒介,因此不会有震波。此外,大气内核爆会由于发生「康普敦效应」而产生强大的电磁脉冲波(EMP),但康普敦效应的前提是要有大气分子参与,故于真空中引爆的核弹不会产生多少电磁脉冲波。因此太空中的核爆的威力只能以光子流等高能幅射线的方式辐射出去,因此实体与电磁破坏半径会远比大气中核爆小许多。
另外,核爆产生的中子流、辐射线等对人杀伤半径则会比大气中大,但辐射线却比较容易用厚厚的船壳挡住。又由于太空船的速度非常快,至少是秒速数十公里以上,惯性会非常大,太空又没有阻力可以煞车,所以太空船之间都会有数十到数百公里,甚至可能数千公里以上的避碰安全距离。而即使间隔上千公里,船舰彼此也还会在彼此的近迫武器射程内,因而仍然可以互相掩护支持。
因此太空战斗中运用的核子飞弹必须以直击来摧毁敌舰。即使是最强力的爆破弹头也只能一次摧毁一艘军舰,不会有一次爆炸卷入摧毁数艘船的情况发生。除非是超新星等级的恒星爆发威力那才有可能。不过那已经是终极武器了。
最后,基于加速的需求,太空中使用的飞弹会有射程下限。使用国中物理公式V^2=v^2+2*a*s可以算出物体移动距离与加速度之间的关系。在给定加速度与终端速度的情况下代入此公式可以求出物体达到最高速度所需的飞行距离。假设某飞弹具有100G的加速度,10000km/sec的终端速度,另外初始速度忽略,则所需的加速距离约为170光秒。若加速度提升到10倍的1000G,则所需的加速距离降为17光秒。低于这个距离飞弹就达不到最高速度。因此太晚发射的飞弹会因为无法加到最高速度,导致非常容易遭到对方的光束近迫系统的拦截。
附带一提,上述17与170光秒的距离可以视为飞弹需要的虚拟加速轨道。这其实就是飞弹与电磁道道炮的最大差别。因为飞弹的虚拟加速轨远比电磁道道炮长的多,在长时间加速下的最终速度当然就会远高于电磁道道炮的炮弹了。
5.广域光束兵器(WideAreaBeamWeapon)
这是种在科幻与ACG里常常可以看到的有趣武器系统。基本上在这里要指出这种武器由于限制太多与不切实际,其可能性并不高。
首先必须注意的是,雷射是聚焦发射的,反射镜直径必定大于具有杀伤能力的靶区直径。道理非常简单,用以将雷射聚焦反射的反射镜必须全部承受其威力并将其反射出去,既然雷射打到敌舰上可以对目标表面投掷能量造成破坏,则其同样会对反射镜造成伤害。雷射之所以不会在打到敌人之前烧穿自己主要是基于以下三个原因:
一、反射镜比靶区大,故单位面积承受的能量密度较低。
二、反射镜的能量吸收率多在0.1%以下,吸收率远比比船壳低,船壳由于需要有匿踪以及散热需求等而不能做到过高的反射率。
三、反射镜会有充分的冷却系统支持来降温。
基于以上三个原因,反射镜必定远大于杀伤范围,直径十公尺的雷射炮不会有超过一公尺的杀伤范围。想做广域雷射武器,反射镜面(或者亦可说是发射天线)的直径可能需要达到千公里到数万公里之谱,也就是说必须做的跟星球表面一样大。
粒子武器也相当类似。如果想在一个区域内投掷高密度的能量,发射源的体积(特别是横截面积)则必然会更大,否则在光束发射出去破坏敌人之前会先破坏自己。因此广域光束兵器必定有庞大的体积,这就是此类兵器的限制。
至于不切实际的地方则原因更明显。假如你知道敌人拥有广域光束兵器,你会把部队编成密集队形给人家打吗?很明显的这是不可能的,一定会采取疏散的方式。一般而言舰队即使间隔数万公里,仍然可以用光束武器有效的互相支持。如果间隔十万公里,则以光束兵器而言只需要约0.3秒的时间便可抵达,而一个广域光束兵器想要在此种编队密度中打到两艘以上的船,则光束源直径必须广达三十万公里以上。基于此一原因,对于广域光束武器的防御远比其运用简单许多,故此种兵器的制造与使用非常不切实际。
广域光束兵器的唯一可能性在于一般系统的附加使用价值。比如大规模的太阳能轨道发电厂便有很多光电板可以反射光线,用作光帆船推进支持的反射式光压推进系统也会有大量聚焦反光板。这些反光板基本上可能会配置在极近的太阳绕极轨道上(不会在太阳黄道面上,这是为了尽量减少对于行星的日光遮蔽效应以免对行星生态环境造成影响),平常用以发电或推动光帆船,必要时则可以使之高度聚焦造出一个高能光束集中区,以来执行区域性的攻击任务。
例如光压推进用的光束聚焦阵列,那在平常时是用来聚焦造出一个广域性的光束航道提供光帆船团一个稳定航线,战时只要缩小此通道的面积便可增大其能量密度,这就可以有效烤焦覆盖区域中的任何物体。其强度并不需要达到能够瞬间气化融化目标的水平,只要使指定区域内能量密度高到船舰的吸热速度大于排热速度,使其热平衡温度上升到数百度的水平,便可以有效的摧毁敌舰。也就是把敌舰变成烤箱,盘子上放的则是里面的乘员与精密电子系统。并不需要以一般电影与动画中那么轰轰烈烈的方式来摧毁敌舰。
而此种兵器至多也仅能一次摧毁数个到数十个目标,不可能一次摧毁数千个目标。最后要提醒的就是,没有在光束杀伤覆盖范围内的目标不会有任何损伤。即使是人穿了太空衣在光束笼罩区域旁边一公分也不会受任何伤害。能量只会集中在通道中,不会扩散到旁边去。这是光束的特性。
6.其它武器系统
其它除了前述这些武器之外,还可能由于科技的进展而出现一些奇奇怪怪的武器系统。其中值得一提的有几种:
微机械炸弹。这是运用能自我复制的微机械做为武器。其大小可能是分子等级,将其释放以后,可以寻找事先设定好的原料来自我复制。如果设定的复制原料是敌人太空船的构成原料,则可以看到微机械附到敌人太空船上大量繁殖将其分解的情形。不过这也不是无法防御的,最简单的方法便是将船壳通上高压电或是加热之类的,而使用微机械也有反噬己舰的可能性。这种系统的可能性将视技术的发展而改变。
WARP炸弹。这算是威力最大与效能/价格比最高的一种武器。将随便什么东西装上瓦普引擎,设定其跳跃目标点为敌舰的位置,使其进行强迫空间跳跃,则就会在敌舰内部出现物质重合的情况而发生强迫性的核融合反应。当然此种系统的前提是发展出WARP技术,并将其系统微型化到一个程度才办的到。只要WARP系统的价格能压到够低,这种系统可以说是最有效率的。甚至可以把军舰的垃圾压缩一下,WARP到敌舰内将其摧毁,一举两得,还兼具环保功能。
太空战斗中还有一部份武器系统主要应是在行星降下作战或是太空船太空舱组的强登作战中使用的武器。这基本上是步兵用而不是太空船的武器系统,最有可能被运用的是人形作战兵器。但不是机动战士里面那种MS,应该说是单兵用的动力装甲服。这并不是什么不得了的技术,实际上美国现今使用的制式太空装便是一种个人太空船。为了使士兵能在真空的环境下长时间活动,太空装自然是免不了的。又为了在强大敌人火力下生存,最好能够加上一些装甲等防护能力。结果就是单兵动力装甲服了。这种装甲服可能从作业用的太空装改过来,体积至少要小到能够通过通用的舱门口。
实际上由于太空处于无重力环境,太空作业并不需要运用到大型机器人,所以工作机组本来就不会很大。再者过大的机器人也会难以操作,最容易操作的机器人便是将人完全包起来,由乘员肢体运动直接控制的系统。这就是所谓「外骨架」或是「延伸骨架」的概念。将其加上装甲与武装便是很好的单兵动力装甲服了。补充一下,这类装甲服的环境调节一定会作的非常好。会不断累积热量的是目前注重便宜不重效率的化学防护装。现今的太空装就有充分的空调让太空人能够长期活动,当然目前受限于动力源因而独立活动时间有限。但这在技术层面上是可以解决的问题。关于这部分的问题,将再之后的行星强袭登陆篇内作更详细的讨论。
;
Copyright 2021宝石小说All Rights Reserved